
©2024 Databricks Inc. — All rights reserved

Prakhar Jain, Databricks

1

Towards Multi-
Statement
Transactions in
Delta

©2024 Databricks Inc. — All rights reserved

● No multi-statement transactions
● No multi-table transactions
● No catalog integration

Delta Lake commits have limitations

©2024 Databricks Inc. — All rights reserved

● Filesystem based commits
○ Leverages atomic filesystem primitives i.e. put-if-absent

● Commit => Write <version>.json in _delta_log directory

Modern Day Delta Commits

INSERT INTO mydb.employees
VALUES

(1, 'John Doe', '1980-01-01'),
(2, 'Jane Smith', '1990-05-15'),

(3, 'Bob Johnson', '1985-12-31');

INSERT INTO mydb.employees
VALUES

(4, 'Mike Johnson', '1980-01-01');

INSERT INTO mydb.employees
VALUES

(4, 'Mike Johnson', '1980-01-01');

Retry Commit

_delta_log/
0000.json

_delta_log/
0000.json
0001.json

_delta_log/
0000.json
0001.json
0002.json

©2024 Databricks Inc. — All rights reserved

● Cloud object stores do not provide APIs to write multiple files atomically
● E.g. Can’t write following two commit files together

○ 145.json on table1
○ 124.json on table2

NO MULTI-TABLE TRANSACTIONS

©2024 Databricks Inc. — All rights reserved

● Catalog is updated in a best effort manner (#2409)
● Information (e.g. Schema) in catalog could be stale

○ Causes split brain between Delta and Catalog

NO CATALOG INTEGRATION

Query
on

Cluster

Object
Store

Catalog
(e.g. HMS)

https://github.com/delta-io/delta/pull/2409

©2024 Databricks Inc. — All rights reserved

NO CATALOG INTEGRATION

● Catalog is updated in a best effort manner (#2409)
● Information (e.g. Schema) in catalog could be stale

○ Causes split brain between Delta and Catalog

Query
on

Cluster

Object
Store

Catalog
(e.g. HMS)

https://github.com/delta-io/delta/pull/2409

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 7

Delta
Managed
Commits

©2024 Databricks Inc. — All rights reserved

• An open and flexible way of doing commits on a Delta table
• Every table has a single commit owner. The commit owner:

• Defines how commits happen
• Handles coordination between multiple writers
• Source of truth for the latest commits (for readers)

• Open: Anyone can define their Commit Owner
• Commit-owner info stored in DeltaLog

Available as preview in Delta 4.0-preview!

Managed Commits
Introduction

©2024 Databricks Inc. — All rights reserved

Pseudocode

Commit Owner Interface

Interface CommitOwnerClient {
// Commits the given iterator of changes to a given version
def commit(version, content): Commit

// Returns the uuid commits in the given range (if any)
def getCommits(from, optional_to): Array[Commit]

}

Class Commit {
String path;
Int length;
Long commitTime;

}

Managed Commits

9

Any vendor could
implement this simple
interface to become a

commit owner!

©2024 Databricks Inc. — All rights reserved

Commit flow with Managed Commits

commit(version, content)

getCommits()

Commit Owner Client

Identify Commit Owner

Make changes to data files

Ask Commit Owner to commit

Success

Delta Client

1 -> 1.uuid-x.json
2 -> 2.uuid-y.json
3 -> 3.uuid-z.json

Some Storage

Commit Owner
Object
Store

RDS

S3

_commits/
1.uuid-

x.json
2.uuid-y.json
3.uuid-z.json

©2024 Databricks Inc. — All rights reserved

Commit flow with Managed Commits

commit(version, content)

getCommits()

Commit Owner Client

Identify Commit Owner

Make changes to data files

Ask Commit Owner to commit

Success

Delta Client

1 -> 1.uuid-x.json
2 -> 2.uuid-y.json
3 -> 3.uuid-z.json
4 -> 4.uuid-p.json

Some Storage

Commit Owner

1 -> 1.uuid-x.json
2 -> 2.uuid-y.json
3 -> 3.uuid-z.json

RDS

S3

_commits/
1.uuid-

x.json
2.uuid-y.json
3.uuid-z.json
4.uuid-p.json

Object
Store

©2024 Databricks Inc. — All rights reserved

• New Writer table feature: managedCommit
• New commit format:

<version>.<unique-id>.json
E.g. 23.46d70172.json

• Delta Client makes data file changes
• Delta Client contacts commit-owner to do the actual commit

• Commit Owner writes the commit file and persists the commit as per its own spec

Managed Commits
Implementation Details

©2024 Databricks Inc. — All rights reserved

• Commit owner tracks commit-
to-fileName map

• Where is it tracked?
• Depends on the implementation

• Could be
• Catalog e.g. Unity Catalog, HMS
• DynamoDB
• any persistent storage

13

Commit Owner
Holds Information about recent commits

commit(version, content)

getCommits()

Commit Owner Client

version-fileName-map

1 -> 1.uuid-x.json
2 -> 2.uuid-y.json
3 -> 3.uuid-z.json

DynamoDB

©2024 Databricks Inc. — All rights reserved

• Backfilling: Copying uuid commit
into self discoverable format:
<version>.json

• Enables older Delta clients to READ
managed-commit tables

• Commit owner could stop tracking
the file after backfilling

table_dir/
_delta_log/

0000.json
0001.json
_commits/

2.uuid-p.json
3.uuid-q.json
3.uuid-r.json

Reads are Backward Compatible
Backfilling Commits

2 -> 2.uuid-p.json
3 -> 3.uuid-r.json

Commit
Owner

3 -> 3.uuid-r.json

Commit
Owner

table_dir/
_delta_log/

0000.json
0001.json
0002.json
_commits/

3.uuid-q.json
3.uuid-r.json

{ empty }

Commit
Owner

table_dir/
_delta_log/

0000.json
0001.json
0002.json
0003.json
_commits/

©2024 Databricks Inc. — All rights reserved

Looking forward

• Managed Commits => all commits go through a commit owner
• Allows Catalog based commits

• If Commit Owner = Catalog, then it knows changes to the table atomically as it is the
one who brokers the commit.

• Commit Owner becomes the central coordinator
• Key requirement for Multi-table-Multi-Statement Txns

Next Steps

• Extend the Managed Commit API to support multiple-statements and
multiple-tables

Commit Owner = Transaction Manager

©2024 Databricks Inc. — All rights reserved

Multi-Statement Transactions

commit(txnId, version, content)

getCommits(txnId)

Commit Owner Client

startTxn()

commitTxn(txnId)

BEGIN TXN;

INSERT INTO `t1` VALUE (1);

DELETE FROM `t2`
WHERE id IN (SELECT id FROM `t1`);

END TXN;

final_state
{

t1: {12 -> 12.uuid.json},
t2: {88 -> 88.uuid.json}

}

active_txns

None

active_txns

txn1: { }

active_txns

txn1: {
t1: {13 -> 13.uuid-p.json}

}

active_txns

txn1: {
t1: {13 -> 13.uuid-p.json},
t2: {89 -> 89.uuid-

q.json}
}

active_txns

None

final_state
{

t1: {13 -> 13.uuid-p.json},
t2: {89 -> 89.uuid-q.json}

}

©2024 Databricks Inc. — All rights reserved

Relevant Github Issues
● Delta Managed Commits #2598
● Delta Multi-table transactions: #832

Thank you!

https://github.com/delta-io/delta/issues/2598
https://github.com/delta-io/delta/issues/832

©2024 Databricks Inc. — All rights reserved

	Towards Multi-Statement Transactions in�Delta

	Delta Lake commits have limitations
	Modern Day Delta Commits
	NO MULTI-TABLE TRANSACTIONS
	NO CATALOG INTEGRATION
	NO CATALOG INTEGRATION
	Delta
Managed�Commits�
	Managed Commits
	Managed Commits
	Commit flow with Managed Commits
	Commit flow with Managed Commits
	Managed Commits
	Commit Owner
	Reads are Backward Compatible
	Looking forward
	Multi-Statement Transactions
	Thank you!
	Slide Number 18

